logo
 

Domov 

Príspevky 

- podľa názvu 

- podľa pracoviska 

- Posledných 10 

Autori 

Hľadať 


Export 


O časopise 



Login:
Heslo:

Štatistika


1107 Príspevky
434 Autori
26 Čísla

0

Publication

Type of publication:Article
Entered by:ADM
TitleElitné prvočísla
English TitleElite Primes
MESC
Bibtex cite ID
Journal Obzory matematiky, fyziky a informatiky
Year published 2006
Volume 35
Number 4
Pages 1-6
ISSN 1335-4981
Abstract
A prime number p is called elite, if only finitely many Fermat numbers Fm = 2^2^m +1 are quadratic residues modulo p. In this paper we give a survey on these primes. In particular, we show how to prove that 3, 5, 7, and 41 are elite primes. Then we introduce a necessary and sufficient condition for a prime to be elite. This condition was recently used to determine all elite primes up to 25 ·10^10 on computers. They can be applied as bases in the famous Pepin’s test. Several open problems concerning elite primes are presented as well.
Authors
Šolcová, Alena
Křížek, Michal
Topics
=SEE CLASSIFICATION DIFFERENCE FROM OTHERS=
BibTeXBibTeX
RISRIS
Total mark: 5
Cited by:
Cite:
  Based on Aigaion, modifications MD© 2007