logo
 

Domov 

Príspevky 

- podľa názvu 

- podľa pracoviska 

- Posledných 10 

Autori 

Hľadať 


Export 


O časopise 



Login:
Heslo:

Štatistika


1122 Príspevky
441 Autori
26 Čísla

0

Publication

Type of publication:Article
Entered by:
TitleProč je obvod Slunce menší než 2Pi r?
MESC
Bibtex cite ID
Journal Obzory matematiky, fyziky a informatiky
Year published 2017
Volume 46
Number 3
Pages 7-18
ISSN 1335-4981
Abstract
In this paper we investigate differences between the Euclidean geometry and the spacetime geometry. We derive formulas for the proper radius and proper volume of a homogeneous mass ball. We shall see that the homogeneous ball, whose mass and radius is the same as that of the Sun, has its circumference about 3 km shorter than 2Pi r, where r is its proper radius. Similarly, the Earth has its proper volume about 457 km3 larger than the massless ball with the same circumference. The difference between the classical Euclidean geometry and the geometry of a curved spacetime will be most visible for balls corresponding to compact astrophysical objects such as, e.g., neutron stars.
Authors
Křížek, Michal
Topics
=SEE CLASSIFICATION DIFFERENCE FROM OTHERS=
BibTeXBibTeX
RISRIS
Total mark: 5
Cited by:
Cite:
  Based on Aigaion, modifications MD© 2007